Question
Program to check whether the matrix is an orthogonal matrix
(To determine if a matrix is orthogonal, we need to multiply the matrix by it’s transpose, and see if we get the identity matrix.)
Matrix:
[1,0,0]
[0,1,0]
[0,0,1]
TRANSPOSE:
[1,0,0]
[0,1,0]
[0,0,1]
PRODUCT OF TRANSPOSE MATRIX AND ORIGINAL MATRIX:
[1,0,0]
[0,1,0]
[0,0,1]
MATRIX IS ORTHOGONAL MATRIX
Share code with your friends
Share on whatsapp
Share on facebook
Share on twitter
Share on telegram
Code
import java.util.Scanner;
public class OrthogonalMatrix
{
public static void main(String[] args)
{
int row=0, col=0,i=0,j=0,k=0,sum=0;
int a[][],t[][],product[][];
boolean flag=true;
Scanner sc=new Scanner(System.in);
System.out.println("ENTER THE ROW OF MATRIX");
row=sc.nextInt();
System.out.println("ENTER THE COLUMN OF MATRIX");
col=sc.nextInt();
if(row!=col)
{
System.out.println("MATRIX FIRST NEED TO BE SQUARE MATRIX");
}
else
{
a=new int[row][col];
t=new int[row][col];
System.out.println("ENTER THE ELEMENTS IN MATRIX");
for(i=0;i< row;i++)
{
for(j=0;j< col;j++)
{
a[i][j]=sc.nextInt();
}
}
/*transpose of matrix starts here*/
for(i=0;i< row;i++)
{
for(j=0;j< col;j++)
{
t[i][j]=a[j][i];
}
}
/*transpose of matrix ends here*/
/*printing of transpose matrix starts here*/
System.out.println("Transpose of a matrix");
for (i = 0; i < row; i++)
{
for (j = 0; j < col; j++)
{
System.out.print(t[i][j]+" ");
}
System.out.println();
}
/*printing of transpose matrix ends here*/
/*product of original matrix and transpose matrix starts here*/
product=new int[row][col];
for (i = 0; i < row; i++)
{
for (j = 0; j < col; j++)
{
sum = 0;
for (k = 0; k < row; k++)
{
sum = sum + (a[i][k] * t[k][j]);
}
product[i][j] = sum;
}
}
/*product of original matrix and transpose matrix ends here*/
System.out.println("Product of original matrix and transpose of original matrix matrix");
for (i = 0; i < row; i++)
{
for (j = 0; j < col; j++)
{
System.out.print(product[i][j]+" ");
}
System.out.println();
}
/*checking whether the product is identity matrix.In identity matrix, all elements except on principal diagonal are zero and elements on principal diagonal are 1*/
for(i=0;i< row;i++)
{
for(j=0;j< col;j++)
{
if((i==j) &&product[i][j]!=1)
{
flag=false;
break;
}
if(i!=j && product[i][j]!=0)
{
flag=false;
break;
}
}
}
if(flag==false)
{
System.out.println("MATRIX IS NOT ORTHOGONAL MATRIX");
}
else
{
System.out.println("MATRIX IS AN ORTHOGONAL MATRIX");
}
}
}
}
Coding Store
Sale

ISC QUESTION PAPERS WITH SOLUTION(PROGRAMMING ONLY)
Sale

ICSE QUESTION PAPER WITH SOLUTION(PROGRAMMING ONLY)
Sale

ISC QUESTION PAPERS WITH SOLUTION(PROGRAMMING ONLY)
Sale

ICSE QUESTION PAPER WITH SOLUTION(PROGRAMMING ONLY)
Sale

ISC QUESTION PAPERS WITH SOLUTION(PROGRAMMING ONLY)
Sale
